KINETIC THEORY OF GASES

Q.1. Value of (P / ρ) of ideal gas at $27^{\circ} \mathrm{C}$ is 12 . Find (P / ρ) value at $127^{\circ} \mathrm{C}$.
A. 16
B. 15
C. 14
D. 12
Q.2. Pressure of a gas at $27^{\circ} \mathrm{C}$ is $\mathbf{2 ~ a t m}$. Find pressure of gas if final temperature is $627^{\circ} \mathrm{C}$.
A. 4 atm
B. 3 atm
C. 2 atm
D. 6 atm
Q.3. At constant volume, temperature of a sample is changed by $5^{\circ} \mathrm{C}$. Its pressure changes by $\mathbf{2} \%$. Find its initial temperature.
A. $\quad 230 \mathrm{~K}$
B. $\quad 250 \mathrm{~K}$
C. $\quad 210 \mathrm{~K}$
D. 270 K
Q.4. A balloon contains $\mathbf{2 0 0} \mathbf{~ m l ~ H e ~ a t ~ p r e s s u r e ~} 2$ atm and temperature 27
${ }^{\circ} \mathrm{C}$. Find volume of He if final pressure is 1 atm and temperature $-3^{\circ} \mathrm{C}$.
A. $\quad 360 \mathrm{~mL}$
B. $\quad 350 \mathrm{~mL}$
C. $\quad 340 \mathrm{~mL}$
D. $\quad 390 \mathrm{~mL}$
Q.5. 12 g oxygen is contained in a closed container at 2 atm and $127^{\circ} \mathrm{C}$. A small hole is made so that oxygen leaks out. Find amount of oxygen leaked if final pressure is 1 atm and temperature is $27^{\circ} \mathrm{C}$.
A. 1 g
B. $\mathbf{4 g}$
C. 3 g
D. 5 g
Q.6. Air is contained in an open mouth vessel at $27^{\circ} \mathrm{C}$. Now this vessel is heated upto a temperature T so that $(1 / 4)$ part of air escapes out. Find T.
A. 400 K
B. 200 K
C. 300 K
D. $\quad 100 \mathrm{~K}$
Q.7. $\mathrm{V}_{\mathrm{rms}}$ for Hydrogen at $27^{\circ} \mathrm{C}$ is V . Find $\mathrm{V}_{\text {rms }}$ for Hydrogen at $927^{\circ} \mathrm{C}$.
A. V
B. 2 V
C. 3 V
D. 4 V
Q.8. $\mathrm{V}_{\mathrm{rms}}$ for Hydrogen at $27^{\circ} \mathrm{C}$ is V . Find $\mathrm{V}_{\mathrm{rms}}$ for oxygen at same temperature.
A. $\quad \mathrm{V} / 4$
B. $\quad \mathrm{V} / 2$
C. V
D. 3 V
Q.9. $\mathrm{V}_{\mathrm{rms}}$ for Hydrogen at certain temperature is $300 \mathrm{~m} / \mathrm{s}$. If temperature is doubled, Hydrogen dissociation into atomic H. Find new $\mathrm{V}_{\mathrm{rms}}$.
A. $400 \mathrm{~m} / \mathrm{s}$
B. $\quad 600 \mathrm{~m} / \mathrm{s}$
C. $\quad 500 \mathrm{~m} / \mathrm{s}$
D. $200 \mathrm{~m} / \mathrm{s}$
Q.10. At constant temperature, pressure of gas is doubled. Find change in $\mathrm{V}_{\mathrm{rms}}$.
A. doubled
B. tripled
C. halved
D. quadrupled
Q.11. Change in pressure is $\mathbf{2 \%}$ (at constant volume). Change in temperature is $5^{\circ} \mathrm{C}$. Calculate initial temperature and \% change in $\mathrm{V}_{\text {rms. }}$.
Q.12. A gas is heated at constant pressure from T_{1} to T_{2} and then this gas is heated at constant volume from T_{1} to T_{2}. Ratio of internal energies in both cases.
A. 1:2
B. 1:1
C. 1:3
D. 1:4
Q.13. A sample contains 2 mol Helium and 4 mol Hydrogen at $27^{\circ} \mathrm{C}$. Find total energy of sample.
A. 7800 cal
B. 6800 cal
C. 5800 cal
D. 4800 cal
Q.14. $\quad C_{P}-C_{V}=a \quad$ for H_{2}
$C_{p}-C_{V}=b \quad$ for $\mathrm{O}_{\mathbf{2}}$
If C_{p} and C_{v} are gram specific heat. Find relation between a and b.
A. $a=32 b$
B. $\mathrm{a}=16 \mathrm{~b}$
C. $a=8 b$
D. $a=4 b$
Q.15. If $\gamma=(7 / 5)$, find C_{v}, C_{p} and F.
Q.16. If $R / C_{v}=0.67$, find F
Q.17. 2 mol of He and 4 mol of H_{2} are mixed. Find $\left(\mathrm{C}_{\mathrm{v}}\right)_{\text {mix, }}\left(\mathrm{C}_{\mathrm{p}}\right)_{\text {mix }}$ and $(\gamma)_{\text {mix }}$. Q.18. During an experiment a gas follows an additional law $V \mathbf{P}^{\mathbf{2}}=$ constant. If volume of a gas becomes 4 times. Find effect on temperature.
A. becomes 2 times
B. becomes halved
C. becomes $\mathbf{3}$ times
D. remains same
Q.19. $\quad P=[R T /(2 V-b)]-\left[1 / 4\left(a / V^{2}\right)\right]$, find μ.
A. $1 / 2$
B. $3 / 2$
C. $5 / 2$
D. $7 / 2$

